专利摘要:
本發明之目的係提供一種由Zn氧化物與Sn氧化物所構成的氧化物型半導體材料(ZTO:Zn-Sn-O系氧化物),以作為IGZO的代替材料,該氧化物型半導體材料係為與IGZO同等以上之10cm2/Vs左右之高載子遷移率,並且不須要高溫熱處理。本發明係為含有Zn氧化物與Sn氧化物之氧化物型半導體材料,其特徵係含有Zr以作為摻雜物,Zr含有量係為,相對於作為金屬元素之Zn、Sn、Zr之各原子數總和之摻雜物的原子比為0.005以下。
公开号:TW201303049A
申请号:TW101115746
申请日:2012-05-03
公开日:2013-01-16
发明作者:Shigeki Tokuchi;Rintaro Ishii;Ryoma Tsukuda;Takashi Kubota;Hiroki Takahashi
申请人:Mitsui Mining & Smelting Co;
IPC主号:C04B35-00
专利说明:
氧化物型半導體材料及濺鍍靶
本發明係關於一種供以形成構成液晶顯示器(display)等顯示裝置之半導體元件的半導體材料,尤其係關於一種含有鋅(Zn)氧化物與錫(Sn)氧化物,且含有鋯(Zr)以作為摻雜物(dopant)的氧化物型半導體材料。
近年來,由液晶顯示器所代表之薄型電視等之顯示裝置,生產量的增加、與大畫面化的傾向很顯著。而且,就該顯示裝置而言,使用薄膜電晶體(Thin Film Transistor,簡稱TFT)作為開關(switching)元件的主動陣列型(active matrix type)的液晶顯示器廣為普及。
在以如前述之TFT作為開關元件的顯示裝置中,係使用氧化物型半導體材料作為TFT的構成材料。就該氧化物型半導體材料而言,有一種屬於透明氧化物半導體材料之一的IGZO(In-Ga-Zn-O系氧化物)受到矚目(參照專利文獻1)。由於該IGZO的載子(carrier)遷移率僅次於目前所使用之多晶矽,且如非晶矽(amorphous silicon,a-Si)TFT特性的特性差異小,因此作為今後的半導體材料為有希望的材料而漸開始廣受利用。
然而,在薄型電視等之液晶顯示器中,出現了顯示方式的改變。具體而言係除平面顯示(2D)外,且提供有能夠立體顯示(3D)的液晶顯示器。在該立體顯示(3D)型的液晶顯示器中,係以藉由利用切換液晶之控制而使顯示畫面的左右呈現相異影像之方式而予以實現。因此,為了如前述之立體顯示型的液晶顯示器,期盼可實現更高速之響應速度的開關元件。
為了對應於如前述之液晶顯示器之顯示方式的改變,已進行種種如IGZO之類的氧化物型半導體材料的開發。成為該高速之響應速度的TFT,高載子遷移率則為重要。例如,在IGZO中,相較於a-Si IGZO的載子遷移率係大於1至2位數,為在5至10cm2/Vs左右。因此,如果是該IGZO係為能夠使用作為屬於立體顯示型液晶顯示器之開關元件的TFT之構成材料,故為了實現更高規格的液晶顯示器,殷切盼望可實現進一步高速之響應速度的TFT之構成材料。
此外,該IGZO係因在形成TFT時必須進行350℃以上之退火(anneal)處理,故有人指出難以利用於如利用可撓性(flexible)基板等之有機EL面板及電子紙張之類的無法進行高溫熱處理之顯示裝置的問題點。
再者,從資源性問題、以及對人體及/或環境的影響,殷切盼望不使用In及/或Ga的氧化物型半導體材料,從該觀點亦必須研發IGZO的代替材料。
就該IGZO的代替材料而言,例如有人提出由Zn氧化物與Sn氧化物所構成之氧化物型半導體材料(ZTO:Zn-Sn-O系氧化物)(專利文獻2、專利文獻3、專利文獻4、專利文獻5)。諸該先前技術的ZTO係研發用以實現高載子遷移率。在諸該先前技術中,雖得知可實現高載子遷移率,惟並無針對形成TFT時之熱處理溫度進行充分地檢討,並未得知對有機EL面板及/或電子紙張的適用可能性。
尤其,在專利文獻5中,雖提出在含有Zn及Sn之氧化物型半導體材料中,作為摻雜物使含有包括Zr之多數元素,從而形成使電子載子密度為大於1×1015/cm3小於1×1018/cm3的氧化物型半導體材料。惟對於該專利文獻5,雖針對薄膜(Sheet)電阻進行檢討,但並未充分地檢討形成TFT時的熱處理溫度及/或熱處理時之摻雜物的含有量等。在該專利文獻5中薄膜電阻與載子密度係具有下述之數式的關係。
Rs=ρ/t
ρ=1/(e.N.μ)
(Rs:薄膜電阻值、ρ:比電阻值(體積電阻率)、N:載子密度、μ:載子遷移率、t:膜厚)
換言之,如專利文獻5所述,當只得知薄膜電阻值時,而無法確定膜厚或載子遷移率時,即無法確定載子密度。由此可見,現狀為關於作為IGZO之代替材料的ZTO,亦引頸期盼進一步的改善。 (先前技術文獻) (專利文獻)
專利文獻1:日本專利4164562號說明書。
專利文獻2:日本特開2009-123957號公報。
專利文獻3:日本特開2010-37161號公報。
專利文獻4:日本特開2010-248547號公報。
專利文獻5:日本特開2009-123957號公報。
本發明係為有鑑於前述情況所開發者,目的係為提供一種含有Zn氧化物與Sn氧化物、以及作為摻雜物之Zr的氧化物型半導體材料(ZTO:Zn-Sn-O系氧化物),以作為IGZO的代替材料,該氧化物型半導體材料的載子遷移率為與IGZO同等以上者,為10cm2/Vs左右之高載子遷移率,並且不須300℃以上之高溫熱處理。
為了解決前述課題,本發明人等,係針對在由Zn氧化物與Sn氧化物所構成之氧化物型半導體材料,使含有Zr以作為摻雜物之情形經深入研究,發現在預定範圍之摻雜物含有量中,於保持具有高載子遷移率狀態下,不必高溫熱處理即可實現能夠驅動TFT的ZTO膜。
本發明係為含有Zn氧化物與Sn氧化物之氧化物型半導體材料,該氧化物型半導體材料係含有Zr作為摻雜物,Zr含有量係為,相對於作為金屬元素之Zn、Sn、Zr之各原子數總和之摻雜物的原子比為0.005以下。
根據本發明之氧化物型半導體材料,能夠使載子遷移率為與IGZO同等以上,且可實現10cm2/Vs左右之載子遷移率,並且藉由250℃以下之熱處理,即形成TFT等之開關元件。此外,因不含有In、Ga,故亦無資源性之問題,且減少對人體及/或環境的影響。
在本發明之氧化物型半導體材料之摻雜物的Zr,係相對於作為金屬元素之Zn、Sn、Zr之各原子數總和之摻雜物的原子比設為0.005以下。具體而言,係令作為金屬元素的Zn之原子數為x、Sn之原子數為y、Zr之原子數為z的情形下,以z/(x+y+z)≦0.005之方式含有摻雜物。該原子比若超過0.005,則在進行300℃之熱處理時載子密度變成未滿1×1015cm-3,而無法維持良好的半導體特性。若原子比為0.005以下,則因載子密度變成未滿1×1018cm-3,故可實現與350℃熱處理後之IGZO膜同等以下的載子密度。摻雜物含有量的下限值,係可實現與IGZO同等以下的載子密度,若藉由250℃以下之熱處理可形成TFT等之開關元件,則不侷限於該數值。在本發明人等的研究下,確認摻雜物之Zr含有量即便在原子比為0.000085(8.5×10-5),亦可採用作為本發明之氧化物型半導體材料。
本發明之氧化物型半導體材料的Zn與Sn,在令Zn之金屬元素的原子數為A、令Sn之金屬元素的原子數為B時,較佳為以A/(A+B)=0.4至0.8之比率含有,更佳為0.6至0.7之比率。若該A/(A+B)未滿0.4,則Sn的比率會變高,故在蝕刻元件形成時所成膜的薄膜以進行圖案化時,利用草酸系蝕刻液的蝕刻速度會極端地變慢,不適於生產步驟。此外,若超過0.8,則因Zn的比率變高,故會使氧化物型半導體材料對於水之耐性變低,而在TFT元件的形成之際於一般性使用之配線及/或半導體層的圖案化步驟中,由於阻劑之剝離劑及/或純水洗淨之影響使ZTO膜本身受到損壞,而使原本之TFT元件特性無法實現,且視情況的不同,ZTO膜會從基板溶解、脫落,而無法形成TFT元件。
本發明之氧化物型半導體材料,係對底閘極型或者頂閘極型之薄膜電晶體非常地有效。如前述,根據本發明之氧化物型半導體材料,因可實現與IGZO同等以上的載子遷移率,且可使用在250℃以下之低溫熱處理,故為適合於要求高響應速度之立體顯示型的液晶顯示器,於形成利用可撓性基板等之有機EL面板及電子紙張等之開關元件時亦可適用。
藉由本發明之氧化物半導體材料形成開關元件時,利用藉由該氧化物半導體材料所形成之薄膜係為有效,在用以成膜該薄膜時使用濺鍍法為佳。
而且,於藉由該濺鍍法形成本案發明之氧化物型半導體材料之薄膜時,使用屬於由Zn氧化物與Sn氧化物所構成,而且含有Zr,Zr含有量係相對於作為金屬元素之Zn、Sn、Zr之各原子數總和之摻雜物的原子比為0.005以下的濺鍍靶為佳。而且,Zn與Sn,係於令Zn之金屬元素的原子數為A、令Sn之金屬元素的原子數為B時,以使A/(A+B)=0.4至0.8之含有比率的靶材為佳。此時,在濺鍍之成膜時,即可使用直流電源或高頻電源、脈衝DC電源。尤其在使用靶材時,藉由使用脈衝DC電源,因能夠抑制產生於靶材表面之結粒或表面高電阻層之形成,而進行穩定之成膜,故成為適合於量產步驟。
在使用本發明之氧化物型半導體材料進行元件形成時,雖可藉由前述濺鍍法進行成膜,惟在此之外亦可適用脈衝雷射沉積法等濺鍍以外之成膜法。此外,於以塗佈半導體材料的奈米粒子分散於溶劑之分散液的方法、或噴墨法形成電路,亦能夠使用本發明之氧化物型半導體材料形成元件。
根據本發明之氧化物型半導體材料,能夠實現與IGZO同等以上的載子遷移率,且以250℃以下之低溫熱處理,可形成TFT等之開關元件。此外,因不含有In、Ga,故亦無資源性之問題,亦能夠減低對人體及環境的影響。
以下,針對本發明之實施形態加以說明。首先針對關於本實施形態之氧化物型半導體材料的濺鍍靶(sputtering target)之製作加以說明。
靶材製作:分別量秤預定量之於大氣環境中,施以於500℃之煆燒的ZnO粉、大氣環境中,施以於1050℃之煆燒的SnO2粉、以及未煆燒的ZrO2粉,投入樹脂製容器(pot)(4L)而以球磨機(ball mill)混合。在該球磨機進行旋轉速130rpm、12小時混合時間之混合。然後,將混合粉以網目500微米(μm)、線徑315μm之篩子進行篩選。將去除粗粒分之過篩粒的混合粉,充填至ψ 100毫米(mm)之碳製沖壓模具,藉由熱壓(hot press)製作燒結體。熱壓條件係將Ar氣體流量設為3L/min,在加壓9.4MPa下昇溫至1050℃為止後,以加壓25Mpa下保持90分鐘,使之自然冷卻再取出燒結體。根據前述之順序,以進行用以形成為第1表所示之各原子比之薄膜的燒結體靶材之形成。
接著,針對使用已製作之燒結體的濺鍍靶的成膜方法、及其膜評估加以說明。使用市售之單片式濺鍍裝置(TOKKI公司製造:SML-464)進行成膜。濺鍍條件係設到達真空度1×10-5Pa,使用Ar/O2混合氣體作為濺鍍氣體,濺鍍氣壓設定在0.4Pa,氧分壓為0.01Pa,在室溫(25℃)的玻璃基板(日本電氣玻璃股份有限公司製造:OA-10)上,藉由150W之DC濺鍍,進行厚度約100奈米(nm)的成膜。
該成膜的膜組成係使用ICP(電或耦合電漿)發光分光分析裝置(SII NanoTechnology股份有限公司製造:Vista Pro)進行。在第1表中,記載由Zn、Sn、Zr的量測值,計算出的Zn/(Zn+Sn)、以及Zr/(Zn+Sn+Zr)的原子比之值。另外,使用於薄膜電晶體(TFT)等之元件時,該氧化物型半導體材料的組成,係將元件切斷,以透射型電子顯微鏡(TEM)等一邊觀察該元件剖面,一邊鑑定氧化物型半導體材料層,以EDX分析該部分即可進行鑑定。
然後,將成膜之各試料,在大氣環境中,於200℃、220℃、250℃、300℃進行1小時退火處理,並分別進行霍爾效應量測,以求得各試料的比電阻值、載子遷移率、載子密度。該霍爾效應量測係藉由市售的霍爾效應量測裝置(Nanometrics japan股份有限公司製造:HL5500PC),使用裁剪出10mm×10mm四方之各試料進行。於第1表顯示各試料的比電阻值、載子遷移率、載子密度的結果。另外,該成膜後的熱處理,與成膜時(濺鍍時)之基板溫度不同,為在成膜後一端固定而穩定之膜施加熱能量。例如,在專利文獻5之基板溫度係為在施加於成膜時之熱,藉由濺鍍而分散之原子在附著於基板時,隨著該基板溫度的上昇,使附著於基板之原子產生移動至較穩定處的現象。換言之,成膜時之基板溫度的控制,係為以濺鍍時之能量與基板溫度之熱能量的總和,使原子的再配置進行,決定膜之結晶狀態及/或配向性等,故與本申請案中成膜後之熱處理不同。
TFT評估:將前述之膜設為通道層,使用金屬遮罩製作薄膜電晶體(TFT)。在第1圖中,係顯示已形成之TFT元件的剖面概略圖(A)及平面尺寸概略圖(B)。如第1圖(A)所示,TFT的形成係首先在玻璃基板10上成膜Al合金(厚度2000 Å)以作為閘極電極20。在此的濺鍍氣壓係以0.4Pa,進行輸入電力1000W之DC濺鍍。接著成膜SiNx(厚度3000 Å)以作為絕緣膜30。在此係藉由電漿CVD裝置(samco公司製造:PD-2202L)進行成膜,並於基板溫度350℃進行輸入電力250W之電漿CVD。原料氣體之流量係設為SiH4:NH3:N2=100cc:10cc:200cc。繼續成膜前述ZTO-ZrO2膜(厚度300 Å)以作為通道層40。在此的濺鍍氣壓係於0.4Pa下進行輸入電力150W之DC濺鍍。設通道的W/L=22。最後藉由ITO成膜源極電極50(厚度2000 Å)與汲極電極51(厚度2000 Å)。在此的濺鍍氣壓係於0.4Pa下,進行輸入電力600W之DC濺鍍。針對依前述方式製作之TFT之元件尺寸係顯示於第1圖(B)。該第1圖(B)之各寬度的數值單位係為mm。
針對已製作之TFT係藉由半導體分析裝置(Agilent Technologies公司製造:Semiconductor Device Analyzer B1500A)量測TFT的傳達特性。量測時所施加之汲極電壓(Vds)係為1至5V,閘極電壓(Vgs)的量測幅度係設-10至20V。在第2圖至第7圖係顯示量測TFT的傳達特性之結果。第2圖至第5圖係顯示實施例1(各熱處理溫度)時之TFT特性,第6圖係顯示比較例1(熱處理200℃)時之TFT特性,第7圖係顯示比較例2(熱處理)時之TFT特性。另外,在第2圖至第6圖中,縱軸左側係為汲極電流:Ids(A)值的對數軸,縱軸右側係為√Ids值之小數點表示軸。
如第1表所示,Zr含有量如果為原子比0.000085(8.5×10-5)至0.00312(3.12×10-3),則得知在200℃熱處理後膜的載子密度係落入1×1015cm-3以上未滿1×1018cm-3的範圍。此外,針對比較例2係於熱處理溫度300℃,使膜的載子密度為未滿1×1015cm-3
此外,實施例1的情況,在各熱處理溫度之TFT特性,為如第2圖至第5圖所示之結果。此外,於第2表顯示在第2圖至第5圖之各TFT特性值之結果。另外,電場效應遷移率μ,係為藉由形成TFT元件而量測TFT特性之結果所獲得的值,第1表的載子遷移率,係藉由已成膜之膜的霍爾效應量測所獲得之值。此外,S值係指為顯示電晶體之特性的次臨界擺幅值(subthreshold swing value)。
如第2圖至第5圖及第2表所示,得知實施例1的情況,在全部的熱處理溫度中,on/off比為5位數,顯示為良好之TFT特性。惟,如第2圖,在實施例1的熱處理溫度200℃中,係在on/off之直線的斜度稍變緩和。此外,針對實施例2至5亦得知為同樣的TFT特性。對此,如第6圖所示,在無摻雜之比較例1(200℃)的情況,確認成為不on/off而不截止的元件,並未發揮開關元件其作為通道層的功能。然後,如第7所示,在比較例2(200℃)的情況,得知on/off的作用非常地弱,並未發揮作為通道層的功能。 (產業上之可利用性)
本發明之氧化物型半導體材料係作為如立體顯示型液晶顯示器之開關元件的要求更高速的響應速度之TFT的構成材料極為有效。此外,本發明之氧化物型半導體材料因能夠使用於低溫熱處理,故適合於利用可撓性基板等之有機EL面板及電子紙張,且從資源性問題、以及對人體及環境之影響的觀點亦具高產業上之利用價值。
10‧‧‧玻璃基板
20‧‧‧閘極電極
30‧‧‧絕緣膜
40‧‧‧通道層
50‧‧‧源極電極
51‧‧‧汲極電極
第1圖(A)及(B)係為TFT之元件概略圖。
第2圖係為TFT特性之量測曲線(實施例1,200℃)。
第3圖係為TFT特性之量測曲線(實施例1,220℃)。
第4圖係為TFT特性之量測曲線(實施例1,250℃)。
第5圖係為TFT特性之量測曲線(實施例1,300℃)。
第6圖係為TFT特性之量測曲線(比較例1,200℃)。
第7圖係為TFT特性之量測曲線(比較例2,200℃)。
10‧‧‧玻璃基板
20‧‧‧閘極電極
30‧‧‧絕緣膜
40‧‧‧通道層
50‧‧‧源極電極
51‧‧‧汲極電極
权利要求:
Claims (3)
[1] 一種氧化物型半導體材料,係含有Zn氧化物與Sn氧化物之氧化物型半導體材料,其特徵為:含有Zr作為摻雜物,Zr含有量係為,相對於作為金屬元素之Zn、Sn、Zr之各原子數總和之摻雜物的原子比為0.005以下。
[2] 一種薄膜電晶體,係使用申請專利範圍第1項所述的氧化物型半導體材料形成的底閘極型或頂閘極型之薄膜電晶體。
[3] 一種濺鍍靶,係用以成膜藉由申請專利範圍第1項所述之氧化物型半導體材料所形成薄膜,該濺鍍靶之特徵為:由Zn氧化物與Sn氧化物所構成;而且含有Zr,Zr含有量係為,相對於作為金屬元素之Zn、Sn、Zr之各原子數總和之摻雜物的原子比為0.005以下。
类似技术:
公开号 | 公开日 | 专利标题
Kwon et al.2015|Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors
Barquinha et al.2008|The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs
TWI429775B|2014-03-11|Sputtering target, oxide semiconductor film and semiconductor device
JP2012033854A|2012-02-16|薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
Wu et al.2015|Sputtered oxides used for passivation layers of amorphous InGaZnO thin film transistors
Park et al.2016|The effects of active layer thickness and annealing conditions on the electrical performance of ZnON thin-film transistors
Yamazaki et al.2016|Achievement of a high-mobility FET with a cloud-aligned composite oxide semiconductor
Bang et al.2018|Effects of Li doping on the structural and electrical properties of solution-processed ZnO films for high-performance thin-film transistors
Ahn et al.2015|Effect of post-annealing temperatures on thin-film transistors with ZnO/Al2O3 superlattice channels
Liao et al.2015|Effects of Pb doping on hole transport properties and thin-film transistor characteristics of SnO thin films
Yang et al.2017|The effect of sputter growth conditions on the charge transport and stability of In-Ga-Zn-O semiconductors
Lee et al.2015|Improvement in device performance of a-InGaZnO transistors by introduction of Ca-doped Cu source/drain electrode
TWI579393B|2017-04-21|氧化物型半導體材料及濺鍍靶
Kim et al.2014|Solution-processed semiconducting aluminum-zinc-tin-oxide thin films and their thin-film transistor applications
Yang et al.2016|The stability of tin silicon oxide thin-film transistors with different annealing temperatures
JP6036984B2|2016-11-30|酸窒化物半導体薄膜
JP5881681B2|2016-03-09|酸化物型半導体材料及びスパッタリングターゲット
JP2014056945A|2014-03-27|アモルファス酸化物薄膜及びその製造方法、並びにそれを用いた薄膜トランジスタ
Shin et al.2011|Annealing temperature dependence on the positive bias stability of IGZO thin-film transistors
Huang et al.2015|High mobility transparent flexible nickel-doped zinc oxide thin-film transistors with small subthreshold swing
Hwang et al.2013|The effect of metal composition on bias stability of solution processed indium oxide based thin film transistors
Han et al.2015|Transparent gallium doped zinc oxide thin-film transistors fabricated on glass substrate
JP2011091365A|2011-05-06|配線構造およびその製造方法、並びに配線構造を備えた表示装置
Avis et al.2014|Solution Processed Oxide Thin Film Transistors
Wang et al.2019|P‐11: Carrier Concentration Reduction by Fluorine Doping in P‐Type SnO Thin‐Film Transistors
同族专利:
公开号 | 公开日
KR20130136537A|2013-12-12|
WO2012165047A1|2012-12-06|
KR101523333B1|2015-05-27|
JP5813763B2|2015-11-17|
JPWO2012165047A1|2015-02-23|
TWI579393B|2017-04-21|
CN103608924B|2016-08-10|
CN103608924A|2014-02-26|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
KR20090018805A|2006-06-08|2009-02-23|아사히 가라스 가부시키가이샤|투명 도전막 및 그 제조 방법, 그리고 그 제조에 사용되는 스퍼터링 타깃|
CN101911303B|2007-12-25|2013-03-27|出光兴产株式会社|氧化物半导体场效应晶体管及其制造方法|
JP2010050165A|2008-08-19|2010-03-04|Sumitomo Chemical Co Ltd|半導体装置、半導体装置の製造方法、トランジスタ基板、発光装置、および、表示装置|
KR101623958B1|2008-10-01|2016-05-25|삼성전자주식회사|인버터 및 그의 동작방법과 인버터를 포함하는 논리회로|
CN104926289A|2008-12-12|2015-09-23|出光兴产株式会社|复合氧化物烧结体及由其构成的溅射靶|JP6144858B1|2016-04-13|2017-06-07|株式会社コベルコ科研|酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法|
JP6557750B1|2018-03-16|2019-08-07|株式会社コベルコ科研|スパッタリングターゲット材、及びスパッタリングターゲット|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
JP2011118804||2011-05-27||
[返回顶部]